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ABSTRACT 

We investigate the minimum dimension k such that  any n-point metric 

space M can be D-embedded into some k-dimensional normed space X 

(possibly depending on M), that is, there exists a mapping f:  M ---* X 

with 

l distM(x,Y) <-- I f (x)  -- f(Y)l <-- distM(x,Y) for anyx ,  y E  M. 
D 

Extending a technique of Arias-de-Reyna and Rodrfguez-Piazza, we prove 

that, for any fixed D _> 1, k _> c (D)n  1/2D for some c(D) > O. For a 

D-embedding of all n-point metric spaces into the same k-dimensional 

normed space X we find an upper bound k (_ 12Dnl/[(D+I)/2J lnn  

(using the g~ space for X), and a lower bound showing that the ex- 

ponent of n cannot be decreased at least for D E [1, 7) U [9, 11), thus 

the exponent is in fact a jumping function of the (continuously varied) 

parameter D. 
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1. I n t r o d u c t i o n  

Let M be a metric space with metric p, let X be a normed space (whose norm 

will be denoted by I" I), and let f :  M --* X be a mapping. We say that  f is a D- 

e m b e d d i n g  (or a mapping with d i s t o r t i o n  at most D), D ~ 0 a real number, 

if we have 

DP(X,y) < If(x) - f(y)l < p(x,y) 

for any two points x, y E M. We say that  M D - e m b e d s  into X if there exists a 

D-embedding* f :  M -~ X. 

The D-embeddabili ty of finite metric spaces into various normed spaces has 

been studied in several papers. This investigation started in the context of the 

local Banach space theory, where the general idea was to obtain some analogs for 

general metric spaces of notions and results dealing with the structure of finite 

dimensional subspaces of Banach spaces. The distortion of a mapping should 

play the role of the norm of a linear operator, and the quantity log n, where n is 

the number of points in a metric space, would serve as an analog of the dimension 

of a normed space. Parts  of this programme have been carried out by Bourgain, 

Johnson, Lindenstrauss, Milman and others; see, e.g., [JL84], [Bou85], [BMW86], 

[JLS87], [Bou86]. 

It appears that  D-embeddings can be of considerable interest also in more 

applied areas. They can serve as a useful representation of graphs and other 

metric spaces helping to visualize their structure, find clusters, small separators 

etc.; see Linial et al. [LLR 94]. 

To formulate some important  questions in this area and the results, we in- 

troduce three functions. We define CD(n) as the minimum k such that  for any 

n-point metric space M there exists a k-dimensional normed space and a D- 

embedding of M into it. We let CF(n) be the minimum k such that  there exists a 

k-dimensional normed space into which any n-point metric space D-embeds, and 

finally r  is the smallest k such that  any n-point metric space D-embeds into 

~ (the vector space Rk with the e~-norm).  Clearly CD(n) _~ ~DF(n) _~ r  

* We remark that the notion of a D-embedding can be introduced for two general 
metric spaces (instead of requiring X to be a normed space), with a formally 
somewhat more complicated definition. Also, a number of various terms besides 
the mentioned ones are used in the literature in this context; e.g., a D-embedding 
is also called a D-isomorphism,  a D- l ipeomorphism,  or the metric spaces 
(M,p) and f(M) with the metric induced by X are said to have Lipschitz 
dis tance at most D, etc. 
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Since any n-point metric space can be isometrically embedded into e~ -1, we 

have r  _< n - 1. On the other hand, using a volume argument it is easily 

seen that for any fixed D, CD(n) _> c(D)logn. 

Johnson and Lindenstrauss [JL84] asked whether this lower bound described 

the actual asymptotic behavior of r Bourgain [Bou85] disproved this by 

showing CD(n) :> ~ ( l o g n / l o g l o g n )  2. In his remarkable paper, he developed 

a technique for constructing D-embeddings of finite metric spaces into normed 

spaces, and also a method for proving lower bounds on the distortion and/or  

dimension required for embedding metric spaces into a fixed normed space (the 

basic approach in this method, which is the use of random graphs, was origi- 

nally suggested by Lindenstrauss). He used these techniques for estimating the 

distortion required to embed any n-point metric space into the n-dimensional 

Euclidean space. His embedding technique combined with other methods has 

been used by Johnson et al. [JLS87] to prove that for any D, 

(1) CD(n) <_ C(D)n A/D 

(with an absolute constant A). In [Ma91] the author used Bourgain's technique 

in a much simpler way (and directly for embedding into g~), showing that 

~)~(n) ~ Cn 3/D log 2 n 

(this also improved the value of A in (1)). 

Essential progress was achieved by Arias-de-Reyna and Rodrlguez-Piazza 

[AR92], who proved that for any D < 2 there exists a constant c(D) > 0 such 

that r ~_ c(D)n (in other words, almost the full dimension n is needed 

for embeddings with distortion below 2). At the same time they ask whether 

r ~_ C(D) log . . . .  t n is true for distortions D > 2. Here we prove that  for a 

fixed D the function r grows at least as a power of n: 

THEOREM 1.1: For a fixed D >_ 1, 

c([DJ)n  f o r d  C [2,4) U 
Co(n) _> c([DJ)n~-rm otherwise, 

where c( [DJ ) > 0 depends on the integer part of D only. 

In particular, for D < 2 this improves the result of Arias-de-Reyna and 

Rodriguez-Piazza, since it shows that for any such D the required dimension 
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is linear in n with an absolute positive constant of proportionality (while in their 

result the constant tends to 0 with D --* 2). 

The asymptotics of the functions r  and CF(n) is described by the 

following result, which also gives the best upper bound for CO(n) known so 

far. 

THEOREM 1.2: 

(i) For any D >_ 3 and n >_ 3, 

1 

~ ( n )  <_ 12DnL(D~I)/2J Inn .  

(ii) 

{ c ( D ) n ~  forDC [1,7) U[9,11), 
r >-- c(D) n ~ J  otherwise , 

where c( D ) > 0 depends on D only. 

For the upper bound (embedding) we apply the technique of Bourgain [Bou85] 

almost in the same way as in [Ma91], and for the lower bound we use Bourgain's 

counting argument similarly as Johnson et al. [JLS87]; we only note that one can 

use explicit graphs without short cycles as a basis instead of probabilistically con- 

structed ones implicitly applied in the above-mentioned papers. Thus, we mostly 

repeat previous work. The reason why we include this result nevertheless is that 

one obtains the surprisingly close upper and lower bounds by looking at the cal- 

culations carefully, and it turns out that the actual dependence of the dimension 

on the required distortion has the strange jumping function 1/L(d + 1)/2J in the 

exponent of n. For instance, the required dimension remains nearly linear for 

distortions below 3, then it jumps suddenly to the order of x/~ at distortion 3, 

etc. 

In the present proof of Theorem 1.2(ii) the constant c(D) tends to 0 every time 

D approaches an odd integer (where the value of the exponent jumps) from below. 

We suspect that a uniform bound for the constant should exist; Proposition 3.1 

in Section 3 shows at least that r  (n) > n/4 for all D < 3. 

The lower bounds in Theorems 1.1 and 1.2 become less precise for larger D; this 

is because of a lack of knowledge about graphs without short cycles. Recall that 

the g i r t h  of a graph G is the length of the shortest cycle in G. The quantity 

relevant for our results is the maximum number of edges a graph of girth g 
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on n vertices can have. A well known upper bound is O(nl+l/[(g-1)/2J), and 

this is conjectured as the correct order of magnitude; see e.g., [Bo178]*. The 

upper bound is tight for g = 3, 4 (using the complete biparti te graph), g = 5, 6 

(using the incidence graph of a finite projective plane) and g = 7, 8, 11, 12 (by 

algebraic constructions, see [Ben66]). For larger g, there is an old lower bound 

of cn l+l/2[(g-1)/2j. An asymptotic  improvement follows from a construction of 

Lubotzky et al. [LPS88] which provides a lower bound of roughly n 1+4/3g for 

infinitely many values of g (this gives corresponding improved bounds in the 

situations of Theorem 1.1 and 1.2(ii); we haven't  included these in the theorems, 

as the exact statements become somewhat complicated). 

Now that  the order of magnitude of CF(n)  has been determined reasonably 

precisely for small D, it would be interesting to find out whether CO(n) is es- 

sentially smaller or not, that  is, whether the freedom to choose a normed space 

for a given metric space helps (it definitely does help for some metric spaces, 

e.g., for the spaces used as lower bound examples in Theorem 1.2). In particular, 

can every n-point metric space be 2.99-embedded, say, into a normed space of a 

sublinear dimension? 

2. Lower b o u n d  for arbitrary normed spaces 

In this section we prove Theorem 1.1. Let the distortion D be given, and let g be 

the nearest even integer strictly larger than 2D. We start  with a 2n vertex graph 

G with girth g and with possibly many edges, according to the lower bounds 

mentioned in the introduction. By removing at most half of the edges, we may 

assume that  G is biparti te with balanced classes, that  is, its edges join vertices 

of U = { u l , u 2 , . . . , u , }  to vertices of Y : {Vl,V2,...,Vn}. 

For every edge e = {ui,vj} e E(G) we choose a suitable sign cij E {-4-1} 

(Lemma 2.2 below deals with the choice of these signs). Then we define a new 

graph G' with vertex set U + U U -  U V, where U + = { u + , . . . , u  +} and U -  = 

{ U l , . . . , u ~ } .  For every edge {ui,vj} e E(G) we put one edge into E(G' ) ;  this 

edge connects vj to either u + or u~- depending on the sign eij. The metric 

space M requiring a large dimension for a D-embedding is the set of vertices of 

G ~ (that is, a 3n point space) with the usual graph-theoretic distance (denoted 

by p). 

* One can always assume that G is bipartite, so that it has no odd length cycles. 
This is why the exponent is the same for an odd g and the next even g. 
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Impor tant  facts about this metric are that  p(u +, vj) = 1 if {ui, vj} E E(G) 

and e~j = 1, p(u~,vj) = 1 if {ui,vj} e E(G) and e i j =  - 1 ,  and p(u+,u~) > g 

for all i. To see the last inequality we note that  by identifying U + and U -  back 

to U we never duplicate edges, and thus a path  of length g connecting u + and 

u~- in G ~ induces a cycle of length < g in G. 

Suppose that  f :  M --* X is a D-embedding into a normed space. For a 

convenient notation, we denote f (w) by ~ for any vertex w of G'.  As in [AR92], 

we choose norm 1 linear functionals h i , . . . ,  hn e X* (thus Ih~(x)-hi(y)l < IIx-yll 

for all x, y e X)  such that  hi (~t +) - hi (~ - )  = II u+ - u~- II. We form an n • n matr ix  

Ao = (hi(vj))in, j=l �9 It  is easy to see that  the dimension of X is at least the rank 

of A0. Let B be an auxiliary matr ix  with b~j = h~ [ ~  and set A = A 0 - B .  \ 2 / ,  
The matr ix  B has rank 1, and thus d im(X) _> rank(A0) _> rank(A) - rank(B)  _> 

rank(A) - 1. 

To estimate rank(A), we derive inequalities for its entries corresponding to 

edges of G. 

LEMMA 2.1: For anypair (i,j) such that {ul,vj} E E(G), sgn(aij) = s~j. 

Proo~ Since f is a D-embedding, we have hi(fi + - ~ )  = I1~ + - ~ i - I I  -> 

p(u+,u~)/D >_ g/D. Thus, for the case e i j =  1 we get 

a i j = h i  ~j 2 ~ > - 1 + ~ - ~ > 0 .  

The case eij = - 1  is symmetric.  | 

Now, in order to finish the proof of Theorem 1.1, it suffices to establish 

the following lemma (the quantitative bounds in Theorem 1.1 follow from the 

quantitative results about graphs of given girth mentioned in the introduction). 

LEMMA 2.2: There exists a choice o/s igns  eij E {=t=l}, for {u~,vj} E E(G), 

such that any matrix A whose entries satisfy the claim of Lemma 2.1 has rank 

at least m/21n, where m = IE(G)I, provided that m is sufficiently large (larger 

than a suitable constant). 

The proof resembles a proof of a result of a similar type of Alon et al. [AFR85], 

which in turn is based on theorems of Milnor [Mil64] and Thom [Tho65]. We 

need the following lemma of [AFR85]: 
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LEMMA 2.3: Let P l , . . . ,  P,~ C ]~[Xl,. �9 xe] be polynomials with real coefficients 

in e variables. Put  J = {1, 2 , . . . ,  m} and let J = J10J20"-"  OJh be a partition 

of J into h pairwise disjoint parts. Define 

Then the number of sequences (al, a2 , . . . ,  am) E {4-1} m such that there exists 

x = (Xl, . . .  ,xe) e N ~ with sgn(pj(x)) -- aj t'or all j = 1,2 . . . .  ,m  is at most 

k(2k - 1) e+h-1. 

Proof of Lemma 2.2: It is well known (and easy to check) that any n x n matrix 

A of rank at most q can be written as a product UV T, where U and V are n x q 

matrices. We let the entries of U and V be variables, so that each entry aij of A 

is a quadratic polynomial in these variables. Then the existence of a matrix A 

of rank q satisfying the conditions of Lemma 2.2 means that the m polynomials 

corresponding to entries aij with {ui ,v j}  E G attain the signs eij. There are 

2 "~ possible choices of the eij. We divide the m considered polynomials into 

h = [m/507 groups by at most 50 and apply Lemma 2.3 with ~ = 2nq; we get 

that the total number of sign patterns attained by these polynomials is at most 

100 x 4002nq+m/5~ For q < m/21n  calculation shows that this number is smaller 

than 2 TM, thus there is a choice of the ~ij corresponding to no rank _~ q matrix. 

| 

3. Lower  b o u n d  for a f ixed n o r m e d  space  

Here we prove Theorem 1.2(ii). Let D > 1 be given, let g be the first even integer 

(strictly) larger than D + 1, and fix a graph G on vertex set V = {vl, v2 , . . . ,  v~} 

with m edges (as many as possible). Let G denote the class of all subgraphs of 

G. For each H E G define a metric space MH on the point set V: the distance 

of v~ and vj will be the minimum of g - 1 and of the graph theoretic distance of 

v~ and vj in H. 

Let X be a k-dimensional normed space, and suppose that for every H E G 

there exists a D-embedding fH: MH ~ X .  We may assume that fH(Vl) = 0 for 

every H, and thus the images of all points are contained in the (g - 1)-ball B 

around the origin of X. Set ~ = �88 - 1) /D - 1], and let N be a ~-net in B 
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(recall that a fl-net is an inclusion maximal subset of B whose any two points 

have distance at least/3). For every H E G define a new mapping fH: MH --* N, 

by letting fH(V~) be the nearest point to fH(V~) in N. 

We claim that for distinct H1, H2 E ~ the mappings fill and fg~ are distinct. 

The edge sets of H1 and H~ differ, so we can choose a pair u, v of vertices which 

form an edge in one of them, say in H1, and not in the other one (H2). The 

distance of u and v in MH1 is 1, while their distance in MH2 is g - 1 (otherwise 

an u-v path i n / / 2  of length < g -  1 and the edge {u, v} would induce a cycle 

shorter than g in G). Then we get 

I fH~(U)--fH~(V)I <IfH~(U)--fH~(V)I +2D~ l q - 2 ~  

and 

I f1-12(u) - fH~(V)[ > I fn2(u) -- fH2(V)I -- 2~ > g -- 1 --  - - D - - - 2 f l =  1-4- 2 f l ,  

therefore fill (u) ~ fH2 (u) or fH, (v) ~ fH2 (V). 
The number of all mappings of V into N is INI n, and this must be at least 

IGI = 2 "~. By a standard volume argument we find the estimate INI < (2g//3) k, 

and calculation gives 
1 m 

k > - -  
- log 2 -~ n 

Theorem 1.2(ii) is obtained by substituting the known estimates for m. | 

Remark: For a fixed small D, the upper and lower bounds in Theorem 1.2 

differ asymptotically by a logarithmic factor. It seems possible that it is the 

lower bound which can be improved, even using the current approach. For, say, 

girth 6 there is no graph G with more than n 3/2 edges, but it is not clear that 

there could not exist a class ~ having, say, 2 cn3/2 logn graphs such that for any 2 

graphs in G there is a pair of vertices which is an edge in one of them and has 

distance at least g - 1 in the other one. 

PROPOSITION 3.1: There exists an n-point metric space which cannot be 

D-embedded into e~/4j-1 [or any D < 3. 

Proof: The metric space will be the complete bipartite graph minus a 

perfect matching. More formally, suppose that n is a multiple of 4, and for 

i = 1 , 2 , . . . , n / 2  let a point ui have distance 1 to all points vj, 1 < j _< n, i r j 
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and distance 3 to vi. Let f be a D-embedding of this metric space to ~ .  For 

every i there must be one coordinate in ~ where f (ui)  and f (vi)  differ by more 

than 1. We claim that  no 3 indices il, i2, i3 can share the same coordinate. For 

contradiction, suppose that  the indices 1, 2, 3 do, and let g(w) denote the 

value of this offending coordinate of f (w) ,  w E {Ul, U2, U3, Vl, V2, V3}. For each 

pair uj ,v j  there are two possibilities for the order relation between g(uj) and 

g(vj), so two indices, say 1 and 2, share the same ordering, say g(ul) < g(vl) 

and g(u2) < g(v2); moreover we may assume g(ul)  <_ g(u2). Then we get 

g(v2) <_ g(ul)  + 1 and g(v2) > g(u2) + 1 >_ g(ul) + 1, a contradiction. | 

4. E m b e d d i n g s  i n t o / ~  

Here we prove Theorem 1.2(i). We follow [Bou85] and [Ma91]. Let D = 2q+ l  > 3 

be an odd integer, let M be an n-point metric space with metric p. We show 

that  M can be D-embedded into g~ with k = (q + 1)[16n U(q+l) lnn] ;  from this 

Theorem 1.2(i) follows. 

First we describe a mapping f :  M --~ g~. Set an auxiliary parameter  p = 

n -1/(q+l), and for j -- 1, 2 , . . . ,  q + l  define probabilities pj = min(1,pj ) .  Further, 

let m = [Snl/(q+l)lnn]. For i = 1 , 2 , . . . , m  and j = 1 , 2 , . . . , q +  1, we choose a 

random subset Aij C_ M, by including every point of M into Aij with probability 

pj, the choices being mutually independent. We divide the coordinates i n / ~  

into q + 1 blocks by m coordinates. Then for every x E M we define the i th 

coordinate in the j t h  block for the point f ( x )  E ~ as the distance p(x, Aij). We 

claim that  with a positive probability, f is a D-embedding. 

It  is easy to see that  f is always a contraction. We have the following lemma 

(due to Bourgain [Bou85], we only refine the formulas a little): 

LEMMA 4.1: Let x, y be two distinct points of M. Then there exists an index 

j C {1, 2 , . . . ,  q + 1} such that if the set Aij is chosen randomly as above, then 

the probability of the event 

(2) Ip(Aij, x) - p(Aij, Y)I > p(x, y) 
- D 

is a t / e a s t  p/8. 

First, assuming this lemma, we finish the proof of Theorem 1.2(i). To show 

that  f is a D-embedding, it suffices to show that,  with a nonzero probability, for 
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every pair x, y there are i, j such that the event (2) in the above lemma occurs 

for the set Aij .  Consider a fixed pair x, y and select the appropriate index j as 

in the lemma. The probability that the event (2) does not occur for any of the 

m indices i is at most (1 - p / 8 )  m < e -p 'Us  < n -2, and since there are (2) < n2 

pairs x, y, the probability that we fail to choose a good set for any of the pairs is 

smaller than 1. II 

Proof  of  L e m m a  4.1: Set r = p ( x , y ) / D .  Let B0 = {x}, let B1 be the (closed) 

r-ball around y, let B2 be the (closed) 2r-ball around x, . . . ,  finishing with Bq+l 

which is a (q + 1)r-ball around x (if q is odd) or around y (if q is even). The 

parameters are chosen so that the radii of Bq and Bq+I add up to p(x, y), i.e. 

the last 2 balls just touch. Let nt denote number of points in Bt.  

Divide the interval [1, n] into q + 1 intervals I 1 , / 2 , . . . ,  Iq+l, where 

I j  = [n(J-1)/(q+l),nJ/(q+l)]. 

If we have no <_ n l  <_ . . .  <_ nq+l then, by the pigeonhole principle, there exists 

an interval Ij containing some nt and nt+l,  so we have 

(3) nt >_ n (j-1)/(q+l) and nt+l <_ n j/(q+l). 

On the other hand, if nt > nt -1  then pick for Ij  the interval containing nt and 

(3) holds as well. 

In this way, we have selected the index j whose existence is claimed in the 

lemma. We will show that with probability at least p/8,  the set Aij  (randomly 

selected with point probability pj)  includes a point of Bt (event El)  and is disjoint 

from the interior of Bt+l (event E2); such an Aij then satisfies (2). Since Bt and 

the interior of Bt+l are disjoint, E1 and E2 are independent. 

We calculate 

Prob[E1] = 1 - Prob [Aij fq Bt  = 0] = 1 - (1 - pj )n, >_ 1 - e x p ( - p j n t  ) >_ 1 - e -p 

by (3). It is an elementary calculus exercise to verify that the last quantity is at 

least p /2  for all p E [0, 1]. Further 

,,nJ/(q+l) 
Prob[E2] _> (1 _pj)n,+x > ( 1 - p j )  _> (1 _pj)l/pj > 1/4 

(since we always have pj _< 1/2). Thus erob[E1 N E:] _> p/8,  which proves the 

lemma. II 
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